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Abstract

The objective of this paper is to extend a failure criterion, which is based on the energy density factor, for an elliptical
cavity or a line crack embedded in an infinite piezoelectric solids, subjected to a combined in-plane electrical and
mechanical loading. In the present analysis, the exact electric boundary conditions are applied at the rim of the cavity/
crack. This is to avoid the common assumption of impermeable or permeable crack, which does not reflect the practical
situation. The direction of crack initiation or subsequent post-failure, and the critical loads for fracture, can be pre-
dicted using the total energy density factor, S. This factor is a function of the aspect ratio of the elliptical cavity, the
electromechanical loading, core region outside the crack tip, permittivity of vacuum and material constants. The results
obtained agree with the experimental observation, i.e. a positive electric field enhances crack growth while a negative
electric field impedes crack growth. Moreover, the results indicate that the critical fracture loads are under-estimated by
the assumption of impermeable crack and over-estimated when the crack is assumed to be permeable for E5™ > 0,
where E5™ is the applied electric field. However, the fracture loads are over-estimated by the assumption of imper-
meable crdck and under-estimated when the crack is assumed to be permeable for E5"" < 0. The energy density criterion
has the advantage of possessing the capability to implement the exact electric boundary conditions. This is due to the
fact that the criterion can link the behavior of a crack to that of an elliptical cavity by consistent application of this
criterion to a thin layer near the cavity/crack boundary. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The fracture problems of piezoelectric materials have received much attention in the last few years. Thus,
vast amount of theoretical results have been obtained by many researchers (Parton, 1976; Deeg, 1980;
McMeeking, 1989, 1990; Pak, 1990; Sosa and Pak, 1990; Suo et al., 1992; Sosa, 1992; Dunn, 1994; Park
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and Sun, 1995; Zhang and Tong, 1996; Gao et al., 1997; and Fang et al., 2000). However, nearly all the
previous analyses were based on the assumption of impermeable or permeable crack, i.e., the crack faces
were assumed to be impermeable or permeable to electric field and, hence, the electric displacement van-
ishes or continues inside the crack, respectively. In fact, these two extreme cases are not realistic, e.g., Park
and Sun (1995) pointed out that the assumption of impermeable crack contradicts many experimental
observations. Since the dielectric constant of the air or vacuum inside the crack is neither zero nor the
dielectric permittivity of the material (McMeeking, 1989; Dunn, 1994; Fang and Soh, 2001), the crack
problems in a piezoelectric material should be treated as electric inclusion problems. Consequently, Sosa
and Khutoryansky (1996) used the series expansion method to address the plane problem of a transversely
isotropic piezoelectric medium with an elliptical hole.

Many fracture criteria for piezoelectric materials have been proposed in the recent years, e.g., the total
potential (Pak, 1990; Suo et al., 1992), the mechanical (Park and Sun, 1995) and the local (Gao et al., 1997)
energy release rates, and the energy criterion considering domain switching dissipation (Fang et al., 2000).
Pak (1990) found that the presence of applied electric field always reduced the total potential energy release
rate. This implies that a crack is impeded by the electric field regardless of its direction. This conclusion
contradicts the existing experimental data. Later, Park and Sun (1995) proposed to use only the mechanical
part of the energy as a criterion by arguing that fracture is a mechanical process and, therefore, it should be
controlled by the mechanical part of the energy release rate. But, this argument is unsound because there
is no fundamental reason to separate a physical process into an electric part and a mechanical part, in view
of the fact that all mechanical forces are of electromagnetic origin. As a result, Gao et al. (1997) proposed
a criterion based on the local energy release rate of an electrically yielded crack. However, the effect of
domain switching cannot be accounted for using this model. In line with Griffith’s theory on mechanical
fracture, Fang et al. (2000) proposed a criterion based on energy balance with the consideration of domain
switching dissipation. However, they only proposed an energy balance approach and the results are the
same as those of Gao et al. (1997).

Sih (1991) has proposed a fracture theory based on the field strength of the local strain energy density.
This theory requires no calculation of energy release rate and, thus, it possesses the inherent advantage of
being able to treat all mixed mode crack extension problems. The stationary value of this density factor can
predict the direction of crack growth in any condition. In addition, the critical value S.; has been shown to
be independent of the crack geometry and loading and, hence, it can be used as a material parameter for
measuring the resistance against fracture. Recently, Shen and Nishioka (2000) used this theory to develop a
fracture criterion for piezoelectric materials. Their theoretical result agrees qualitatively with the empirical
evidence by assuming impermeable crack.

In the present study, the energy density fracture analysis of an elliptic cavity or a crack, in a trans-
versely isotropic piezoelectric solid subjected to remote loading, is carried out. This study adopts the
approach and the assumption of exact electric boundary conditions employed by Sosa and Khutoryan-
sky (1996). First of all, a surface layer criterion (Sih, 1991) is used to locate the position where the fracture
of the elliptic cavity is expected to initiate. The direction of crack initiation and subsequent post-failure can
be described by the total energy density factor, S, from which the critical loads for fracture can be pre-
dicted.

2. Basic equations

Fig. 1 shows an infinite poled piezoelectric ceramic, in which a central elliptic cavity of major and minor
semi-axes, a and b, respectively, is embedded. This piezoelectric ceramic plate is subjected to a remote in-
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Fig. 1. Schematic diagram of an elliptical cavity embedded in a piezoelectric solid subjected to uniform loading at infinity.

plane electrical loading, £5°, and mode I mechanical loading, ¢35. The cavity is assumed to be filled with a
dielectric medium of permittivity, &y, and it is free of traction force and charge. The ceramic is poled in the
positive direction of the x, axis.

The general equations governing the three-dimensional theory of piezoelectricity in the absence of body
forces and free charges are as follows:

&ij = SijuiOw + LrijDr (la)

E; = —guwown + ByDx (1b)

where i, j, k, I =1, 2, 3; 0y, D;, &, E; are the components of stress, electric displacement, strain and electric
field, respectively; and s;, gw; and f;;, represent the compliance tensor of material, piezoelectric tensor and
dielectric impermeability tensor, respectively.

For a transversely isotropic solid in Cartesian coordinate system Xx, y, z, assuming that x—y is the
isotropic plane and z is the poling direction, the constitutive equations (la) and (1b) can be written
as:
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In order to study the electromechanical interaction explicitly, the three-dimensional model is reduced to a
two-dimensional one by assuming either x—z or y—z plane as the plane of analysis. For the purpose of
convenience, the former, which is the same as that chosen by Sosa (1992), is selected by assuming that

y =&y =&y =E, =0 (3)

By renaming the index x — 1, z — 2 and minimizing the notation of constants, Egs. (2a) and (2b) becomes

&1 ap  an 0 011 0 by D,
t5%) = app ad» 0 022 + 0 bzz {D } (48_)
2812 0 O ass 012 b13 O 2
E1 _ 0 0 b13 le + C11 0 D1 (4b)
E, by by 0 2 0 cn|| D
012
where
o S%g - S12513 - S%3 -
ayn =8 ——, a4 =S513— y A =833 ——, A33 = Su4
S11 S11 S11 (5)
S12 S13 2
by=|1—— g, bn=gn——gu, biz=gs cu=Pp cn=7P;s+>=
S11 S11 S11

By adopting Sosa’s approach (1992), the field solutions for the two-dimensional problem can be expressed
as

2
3 [ i 3 3

0':2Rez 1 o, D:2ReZ{f’“1 })vkgoj{; E:2ReZ{Jk}Kk<p; (6)
= | — =1 =1

H

where Re and Im denote the real and imaginary part, respectively; y, are distinct complex parameters to be
obtained from the characteristic equation (Sosa, 1992), and ¢, (as functions of three complex variables
z;y = x1 + 14x,) are the three complex potentials to be determined.

The complex potentials are linked to the boundary conditions. Firstly, the problem that we consider is
an infinite piezoelectric body containing an elliptic cavity of major and minor axes 2a and 2b, along x; and
Xy, respectively. The uniform stresses ¢35, 073, 055 and electric displacements D{°, D5° are applied remotely.
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The cavity is assumed to be filled with a homogeneous medium of dielectric permittivity ¢, and it is free of
forces and surface charge density (Sosa and Khutoryansky, 1996).

3. Solution for an elliptic cavity

By applying the procedure proposed by Sosa and Khutoryansky (1996), the field solutions for two-
dimensional problems based on the exact electric boundary conditions can be expressed as

o o1 3 W
6=|0n | =05 ]+2Re Z 1 L (7)
o1 gt = =y

D= (g;) = (g;) +2Re§:{fkl };LkLk (8)

k=1

Using the constitutive equation, i.e. Egs. (4a) and (4b), together with Egs. (7) and (8), the strain and electric
field can be expressed as:

e T 3 (anpg +an —bu
&= &€ = 820(2: + 2Re Z (1]2/,{% +axy — b22/lk Lk (9)
281 Fides =1\ —asspy + bisdly
E, EX 2. /1
E = = ! + 2Re KiL 10
(£) = (5 ) +2re3s s ()
where
—my
Ly = LW, z) = 5——— (11)
M(Ck)

in which {; are the complex coordinates in the mapped plane, wy({;) is the conformal function. Note that
my, in the third expression of Eq. (11) correspond to a;; employed by Sosa and Khutoryansky (1996).

The expressions given in Eqs. (7)—(10) are valid everywhere in Q. In order to determine the failure
location along the boundary of the ellipse, change of variables is introduced as follows:

zy = acos ¢ + wbsin ¢ (12)

where —7 < ¢ < 7 is measured along the boundary of the ellipse. Thus, we obtain (Sosa and Khutoryansky,
1996)

) _ my(sin +1i cos ¢)
Ly = Li(y, ¢) = asin ¢ — b cos ¢

(13)

For an elliptical notch, a surface layer criterion proposed by (Sih, 1991) can be employed as a prelimi-
nary judgment to locate the position ¢, at which fracture may initiate from the notch surface. Note that ¢
denotes the angle between the direction of crack propagation and that of the positive major semi-axis of the
elliptical notch, as shown in Fig. 1. Once the angle ¢ is determined, the knowledge of the energy stored in an
element outside the core region (near the apex of the elliptical notch) is used as a means for establishing the
failure location at some points in the bulk of the solid.
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The energy associated with the surface layer can be derived from the mechanics of thin layer. On I', the
radial stress is equal to zero. Thus, the element in the thin layer is subjected to uniaxial tension. The
tangential stress and strain and the electric displacement and field are, respectively, given by

ou(¢) = é (011 sin” ¢ — 201500510 ¢ cos ¢ + 7220 cos” ¢ (14)
ess(P) = é [e118in® ¢ — 21200008 P sin  + ex20% cos? @] (15)
Dy(¢) :%[—Dl sin ¢ 4 Dyo.cos ¢] (16)
Ey() :é[—El sin ¢ + E0.¢os ¢ (17)

where @ = \/ocz cos? ¢ + sin” ¢
Therefore, the strain energy per unit area of the surface layer can be expressed as

Ve = (3045655 + 3ED,)0 (18)

where § is a parameter for quantifying the surface condition. Note that y,/dc’na is a convenient non-
dimensional form for indicating strain energy. A notched specimen may be loaded to failure and the strain
energy per unit surface layer can be computed from Eq. (18). The location of initial failure (i.c., the angle of
crack propagation, ¢) on the notch boundary is then determined by setting 0y,/0¢ = 0 for y, to reach its
maximum value.

4. Solution for a crack

The field solutions for a crack are similar to those for an elliptical cavity by taking the former as the
limiting case of the latter, i.e., let » — 0. One of the objectives of this study is to predict the direction of
crack propagation for both an elliptical cavity and a line crack, which in turn, gives the distributions of the
electromechanical fields in the vicinity of the crack tip. This is achieved by assuming that

zy =a+rcosf+ pyrsinf (19)

where r > 0, —n <0< 7 and r/a < 1. Note from Fig. | that the original coordinates for the crack tip are
different from those for the elliptical cavity. Hence, the third expression of Eq. (13) becomes

_ — M1
v/2ar(cos 0 +  sin 0)

The equations for establishing the field solutions is the same as that for the elliptical notch except those for
L, and m3, which can be simplified as

Ly

where k = 1,2,3 (20)

%(ﬁ— H) +011§(q’—¢)
e (fg+ /%)

ms3; =

where

Y = 13 — (hlll + hzlz) and II = l4 — b13lz + C]](hgl] + h4lz) (22)
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5. Energy density concept

For a piezoelectric material containing an elliptical cavity, the surface layer energy criterion is only
applicable to the surface of the cavity. The strain energy density criterion is then employed to predict the
trajectory of crack propagation or failure path at the interior points near the surface. Similar to the pure
mechanical case (Sih, 1991), the energy density function for the electromechanical case in the element d V" of
a general three-dimensional system can be written as

daw 1

1
d_V = EGUSU —+ _Ele' (23)

2

Note that the right-hand terms of Eq. (23) can be obtained from Egs. (7)—(10) to yield an expression in-
volving 1/r energy singularity plus nonsingular terms. Hence, the intensity of the strain energy density field
(S) can be expressed as

aw
S:VW:I"(S1+S2/\/I_’+S3/}’) (243)
where the coefficient Sj, S,, S;3 are dependent on the material constants, the polar angle 0 as well as the
remote mechanical and electrical loading, as shown in Fig. 1. If the electric field £5° and mechanical stress
055 are applied at the remote boundary, as shown in Fig. 1, the total energy density factor S can be ex-
pressed as

D (A“agjz 24 o SES +A22E§°2> (24b)

where the coefficients 4;;, 4, and 4,, are dependent on the materials constants, and the angle 0 of the polar
coordinate system at the crack tip. Note that the coefficients for a crack are independent of the radius r at
the crack tip. However, for an elliptical cavity or a notch these coefficients are dependent upon the radius
r originated at the apex of the elliptical cavity (Sih, 1991). The fundamental parameter in this theory, S, is
direction sensitive in the sense that it predicts the direction of crack propagation. This is accomplished by
calculating the stationary value of .S or dW /dV, with r being the radial distance measured from the crack
front. The minimum S value, i.e., Smin, 18 related to dilatation of material elements and is associated with the
creation of a free surface that fracture is expected along the line of crack extension.

For the present two-dimensional problems, the direction of crack propagation can be determined by a
single variable 0 with different values of r giving the same trend. Hence, the necessary and sufficient con-
ditions for the strain energy density factor S to be minimized are as follows:

GA) ’S
@:0 andﬁ>0 at9:90 (25)

The minimum energy density factor, which occurs at the crack initiation direction (6y) can be determined
from Eq. (29).

5.1. Numerical example

In order to demonstrate the suitability of the energy density theory for solving the problem of piezo-
electric failure in the case of exact electric boundary conditions, an elliptic crack embedded in a piezoelectric
material, PZT-4, is considered. The following material constants have been obtained by Berlincourt et al.
(1964):
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a; =8205x 1072, 4, = —3.144 x 1072, a4y =7.495 x 1072, 433, =193 x 1072 (m®N"1)
b21 = —16.62 x 1073, b22 =23.96 x 1073, b13 =394 x 107’; (mchl)
c11 =7.66 x 107, ¢y =9.82 x 107 (VAN'),

By solving the characteristic equation of yu,, the three distinct complex roots can be obtained:
= 1.218491, u, = —0.2006087 + 1.0698791, p; = 0.2006087 + 1.069879i

Therefore, the corresponding values of /;, x; can be calculated. For an infinite poled PZT-4 plate,
containing a central elliptic cavity, subjected to a remote in-plane electric loading, £5°, and mode I me-
chanical loading, 55, as shown in Fig. 1, the load parameters reduce to

acs a ((E + byo3s 1b
L =——"2 [,=0, =-2—="2 Iy = ——(EY 26
! 2 ) ( c» b 2 ( 2 ) (26)

After substituting all expressions into Eq. (18), y, is obtained in terms of E°, ¢35, r and ¢ with
g = 8.85 x 10712 NV~ (permittivity of vacuum). As an illustration, for three different ratios between the
applied electric field and the applied stress(f = E5°/055), the normalized surface layer energy, y,/d0°na, is
plotted against the angle, ¢, for several values of « (= b/a), as shown in Fig. 2(a)—(c). It should be noted
that the length of the major semi-axis, 4, is fixed at ¢ = 0.01 m for all calculations. In the case of § = —0.01,
for all values of o, the normalized surface layer energy displays a sharp peak near ¢ = 0°, which is at
a symmetrical location, and this peak moves closer to ¢ = 0° as a(= b/a) decreases. Since failure occurs
at the location of maximum surface layer energy, the minimum load to failure occurs in the region near
¢ = 0°. In short, as « — 0, initiation of fracture occurs over a range near ¢ = 0°, as shown in Fig. 2(a). In
Fig. 2(b) and (c), the same failure trend can be seen near ¢ = 0° as o decreases. As o increases, the failure
location moves away from ¢ = 0°, e.g., failure will occur at around ¢ = —9° for o = 0.5, around ¢ = —5°
for o = 0.25, and around ¢ = —3° for o = 0.125. It can be seen that when an elliptical cavity in a homo-
geneous solid is subjected to remote loading, the maximum surface layer energy occurs in the surface region
in the fourth quadrant, i.e., —90° < ¢ < 0°, of the surface region near the right apex of the cavity. For the
same remote loading, no matter in which direction the electric field is applied, increase of loading is allowed
when the notch tip becomes more blunt. From Fig. 2(a)—(c), it can be seen that as f increases, the peak
value of the normalized surface layer energy for o = 0.125 increases considerably, but not for other values
of o. This is to say, when o becomes smaller, i.e., the elliptical cavity becomes more like a crack, the effect of
the loading ratio, f, on the surface layer energy becomes more significant.

By setting o = 0.0625 and varying f3, similar results are obtained, as shown in Fig. 3. Note that in the
calculations, the stress value is fixed while varying the electric field. Therefore, the loading ratio f§ varies due
to the variation of electric field. As the electric field increases from negative to positive, as shown in Fig. 3,
the normalized surface layer energy increases while fracture occurs at the same location. This indicates that
a negative electric field impedes cracking and the reverse is true for positive electric field.

Naturally, one would like to know how the crack would extend from the initial failure location on the
surface of the elliptical notch. As mentioned above, in order to determine the direction of crack propa-
gation, 0 = 0y, the stationary values (S,;,) of the strain energy density for various radius vectors need to be
calculated. Thus, for each radius /a, i.e., in a region a distance from the notch surface as shown in Fig. 1, a
curve is generated with respect to the angle 6. The calculated results show that for different radius vectors
and directions of the applied electric field, the direction of subsequent fracture is always horizontally
outward, i.e., in 0 = 0 direction, as shown in Figs. 4(a)—(c) and 5. Note that for each of the curves in Figs. 4
and 5, there are five stationary values that satisfy 0S/00 =0, but only three satisfy the condition
0%S /00> > 0. The critical fracture loads should be the minimum value of ¢, which corresponds to the
maximum value of § among the three minimum stationary values. Therefore, only the stationary value at
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Fig. 2. Variation of the normalized surface layer energy against angle ¢ for different values of o at (a) f = —0.01; (b) f=0; (c)
f=0.01.

0 = 0 gives the minimum critical fracture load. Thus, the cracking angle should be 6, = 0. From Fig. 4(a)-
(c), it is obvious that the curve of S versus 0 depends not only upon f§ but also on the value of r. Fig. 5
clearly shows that the normalized S increases with increasing . Note that the calculated results presented in
Figs. 2-5 are obtained based on the assumption that the permittivity of the medium inside the elliptical
cavity equals the permittivity of vacuum, i.e., & = 8.85 x 1072 NV 2. Fig. 6 shows the variation of the
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Fig. 3. Variation of the normalized surface layer energy against angle ¢ for different values of f in the case of o = 0.0625.

normalized energy density factor against 6 for different values of dielectric permittivity of the medium inside
the elliptical cavity in the case of « = 0.000625 and » = 0.8 x 1072, The dotted line corresponds to the
impermeable condition with & = 0.0 NV and the dashed line represents the permeable condition
in which the permittivity of the medium inside the cavity is equal to that of piezoelectric ceramic, i.e.
g =5 x 107 N'V2. The effect of the permittivity of the medium inside the cavity on the energy density
factor is obvious.

For fracture analysis of a line crack, which can be regarded as the limiting case of an elliptical cavity, the
local energy density can be minimized using Egs. (24a), (24b) and (25) for prediction of crack propagation
when the electric fields are applied in different directions. Without any loss in generality, we choose a
fracture stress of 2 MPa obtained when no electric field is applied (Park and Sun, 1995). Note that in the
calculations, the condition of 5 — 0 but b # 0 (i.e., the crack keeps open) is assumed. It is of interest to
examine the effect of the applied electric field on the fracture loads. For the case of exact, impermeable and
permeable boundary conditions, i.e., ¢ = 8.85x 1072 NV ™2 ¢ =0.0NV 2 and ¢ =5x 102 NV 2,
respectively, the energy density factors for PZT-4 can be expressed as

Sexact = 107'1[509.165(E)? + 0.91959(033) + 24.66E5°633] (27)
Simpermeable = 10711 [1121.897(EX)* + 0.69459(533)° + 18.075E5635] (28)
Spermeante = 10711[509.165(EX)* + 2.205787(6%3)° + 16.915EX65] (29)

Note that these three expressions for S involve both the applied mechanical stress and electric field. The
critical fracture stress for a given applied electric field E5° can be predicted by substituting S, (= 411K%.) in
the above expressions. For easy comparison of the energy density and energy release rate criteria, the
energy release rate for an impermeable crack in PZT-4 material is expressed as

G=1x10""0.036(c%)" + 0.03763EX — 13.8(EF)’ (30)

Thus, the fracture stress can also be determined from Eq. (30) for a given applied electric field in terms of
the energy release rate. The critical fracture stresses calculated from different fracture criteria and boundary
conditions are compared in Fig. 7. The crack propagation is found to be in the x; direction for the range of
electric field shown in Fig. 7. Moreover, the effect of the direction of the applied electric field on crack
propagation for the case of sharp crack is similar to that for the case of elliptical notch, i.e. a negative
electric field impedes crack propagation while a positive electric field enhances crack propagation. The
critical fracture loads can also be predicted by assuming impermeable crack, i.e., by setting the dielectric
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Fig. 4. Variation of the normalized energy density factor against 6 for different values of r at (a) f = —0.01; (b) f = 0; (c) f = 0.01.

constant in the cavity, gy, to zero. It can be seen from Fig. 7 that the curvature of the curve for the case
of impermeable crack is larger than that for the case of exact boundary conditions. This means that the
fracture loads are under-estimated by the assumption of impermeable crack (with ¢, = 0.0 NV~?). In other
words, the piezoelectric fracture load is under-estimated in the case of impermeable crack subjected to
positive applied electric field, i.e., E5™ > 0. However, the curve for the permeable crack (with permittivity
equals to that of the piezoelectric ceramic, i.e., & = 5 x 107 N'V~2) is above that of the exact boundary
condition, indicating that the fracture load is over-estimated by the assumption of permeable crack for
E5™ > 0. For the case of E5™ < 0, the trend is reversed for both the impermeable and permeable cracks. In
contrast to the energy density criterion, the fracture loads calculated based on the criterion of energy release
rate are independent of the direction of the applied electric field (as shown in Fig. 7) which contradicts
many experimental observations. The dependence of the fracture loads, calculated from the energy density
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criterion, on the direction of the applied electric field can be clearly seen in Fig. 7. Note that the four curves
intersect at the point of zero applied electric field, which is the case of pure mechanical loading. It is worth
mentioning that when the applied electric field, or the loading ratio f(= E/o) is out of the region bounded
by the straight line that intersect the dotted curve, as shown in Fig. 7, the direction of crack propagation is
no longer along the plane 6 = 0. In addition, in the calculations the applied electric field should be kept
below 10° V/m, which is the coercive field of piezoelectric ceramic. This is because a high electric field leads
to dielectric breakdown.

6. Conclusions

The objective of this paper is to extend a failure criterion, based on the strain energy density theory, for
an elliptical cavity or a line crack embedded in an infinite piezoelectric solid, subjected to a combined in-
plane electrical and mechanical loading. This has essentially been accomplished through the consistent
application of the strain energy density criterion to a thin layer near the cavity/crack boundary and material
element in the interior region of the solid. The total energy density factor (S) depends on the material
constants, f5, «, polar angle, core region near the apex of the elliptical cavity, and the permittivity of
vacuum. The core region on the cavity/crack boundary remains unspecified in size because of different
material behavior external to the core region. Unstable crack extension is assumed to occur when some
small element just outside the core region has absorbed as much elastic energy as possible and releases it to
allow material separation.

As discussed above, the location on the free surface of a cavity, at which the surface layer energy is the
maximum, may be postulated to be the location where initial failure occurs. Subsequently, the immediate
post-failure crack direction may be determined by minimizing the total energy density factor. The results
obtained in this paper by introducing the exact electric boundary conditions on the cavity/crack boundary
are more realistic because it reflects the practical situation. In short, the superiority of the energy density
theory has been clearly shown from its capability of adopting the exact boundary conditions. For example,
the calculated results show that the fracture loads are under-estimated by the assumption of impermeable
crack and over-estimated by the assumption of permeable crack for £5™ > 0.

Acknowledgements

Support from the Research Grants Council of the Hong Kong Special Administrative Region, China
(Project no. HKU 7122/99F), from the Croucher Foundation Chinese Visitorship, and from the National
Science Foundation of China under grants #19891180 and #59772017 is acknowledged.

References

Berlincourt, D.A., Curran, D.R., Jaffe, H., 1964. Piezoelectric and piezoceramic materials and their function in transducers. Physical
Acoustics, vol. I-A. Academic Press, New York.

Deeg, W.F., 1980. The analysis of dislocation, crack and inclusion problems in piezoelectric solids. Ph.D. Thesis, Stanford University.

Dunn, M.L., 1994. The effect of crack face boundary conditions on the fracture mechanics. Engng. Fract. Mech. 48, 25-39.

Fang, D.N., Liu, B., Hwang, K.C., 2000. Energy analysis on fracture of ferroelectric ceramics. Int. J. Fract. 100 (4), 401-408.

Fang, D.N., Soh, A.K., 2001. Finite element modeling of electromechanical coupled analysis for ferroelectric ceramic materials with
defects. Comput. Meth. Appl. Mech. Engng, 190 (22-23), 2771-2787.

Gao, H., Zhang, T.Y., Tong, P., 1997. Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic.
J. Mech. Phys. Solids 45, 491-510.



8344 A.K. Soh et al. | International Journal of Solids and Structures 38 (2001) 8331-8344

McMeeking, R.M., 1989. Electrostrictive forces near crack-like flaws. J. Appl. Math. Phys. 40, 615-627.

McMeeking, R.M., 1990. A J-integral for the analysis of electrically induced mechanical stress at cracks in elastic dielectrics. Int.
J. Engng Sci. 28, 605-613.

Pak, Y.E., 1990. Crack extension force in a piezoelectric material. Trans. ASME, J. Appl. Mech. 57, 647-653.

Park, S., Sun, C.T., 1995. Fracture criteria of piezoelectric ceramic. J. Am. Ceram. Soc. 78, 1475-1480.

Parton, Y.E., 1976. Fracture mechanics of piezoelectric materials. Acta Astronautica 3, 671-683.

Shen, S., Nishioka, T., 2000. Fracture of piezoelectric materials: energy density criterion. Theor. Appl. Fract. Mech. 33, 57-65.

Sih, G.C., 1991. Mechanics of Fracture Initiation and Propagation. Kluwer Academic Publishers, Dordrecht.

Sosa, H.A., Pak, Y.E., 1990. Three-dimensional eigenfunction analysis of a crack in a piezoelectric material. Int. J. Solids Struct. 26,
1-15.

Sosa, H.A., 1992. On the fracture mechanics of piezoelectric soilds. Int. J. Solids Struct. 29, 2613-2622.

Sosa, H.A., Khutoryansky, N., 1996. New developments concerning piezoelectric materials with defects. Int. J. Solids Struct. 33, 3399
3414.

Suo, Z., Kuo, C.M., Barnett, D.M., Willis, J.R., 1992. Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40, 739—
765.

Zhang, T.Y., Tong, P., 1996. Fracture mechanics for a mode I1I crack in a piezoelectric material. Int. J. Solids Struct. 33, 343-359.



